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Closed-Loop Neurocontroller Tests on Piezoactuated
Smart Rotor Blades in Hover
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On-blade smart structure actuators are capable of actively altering the aerodynamic loads on rotor blades. With
a suitable feedback control law, such actuators could potentially be used to counter the vibrations induced by
periodic aerodynamic loading on the blades with lower weight penalties than the previous actuation methods and
without the bandwidth constraints. We cover the development and testing of a new, robust individualblade control
methodology for rotor vibration suppression using piezoactuated trailing-edge � aps and active twist tip rotors.
The controller uses a neural network to learn to actuate the trailing-edge � ap, thus adaptively suppressing the
blade or hub vibrations. In this application, no of� ine training is performed. Instead, a neural network is used
in real time to command adaptively the actuator de� ections, thus reducing vibrations. Closed-loop experimental
tests with piezoactuated-scale rotor systems were conducted on the University of Maryland hover test stand. The
results include two different Mach-scale smart rotor systems (trailing-edge � aps and active tip twist) that were
controlled by the same adaptive neurocontrol algorithm. These tests demonstrate the controller’s robust ability to
learn to control successfully the rotor vibrations with no a priori information about the blade/actuator structure
or the aerodynamic loading.

I. Introduction

T HE major sourceofhelicoptervibrationis themain rotor,which
transmits oscillatory forces and moments through the hub to

the airframe. The blade loads are generatedby the unsteadyaerody-
namics at the rotor disk. For a rotor with Nb blades, the oscillatory
(Nb ¡ 1/=revolution, Nb=revolution, and (Nb C 1/=revolutionblade
loads are transmitted as exciting hub forces and moments to the
vehicle at a dominant frequency of Nb=revolution (Ref. 1). Higher
harmoniccontrol (HHC) is an active vibrationcontrolapproach that
has been shown to be effective in suppressinghelicopter vibrations.
An HHC system excites the blade pitch at higher harmonics of the
rotor rotational speed, generating new unsteady airloads that com-
bine with oscillatory inertial loads to cancel the harmonics of the
blade loads that cause hub vibrations.The helicopter vibrations are
thereby suppressed at the source.1¡3

One method that has been extensively investigated is active
blade root pitch control using swashplate oscillations. The swash-
plate is activated in the collective, longitudinal cyclic and lat-
eral cyclic modes at Nb=revolution resulting in blade pitch oscil-
lations at the frequencies of (Nb ¡ 1/=revolution, Nb=revolution,
and (Nb C 1/=revolution in the rotating frame.1 HHC methods have
been applied successfully using numerical simulations,1¡4 wind-
tunnel tests,5¡8 and full-scale � ight tests,9¡11 producing reductions
in vibration from 25 to 90%.

Although capable of reducing vibrations, these control systems
require high actuation power and involve large weight penalties.
Also, the swashplate actuation is limited to Nb=revolution. These
drawbacks lead to research into individualblade control (IBC)10¡14

systems, where the pitch of each blade is controlled separately at
any desiredfrequency.The featheringof the completebladerequires
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large actuation forces, and early IBC methods used hydraulic de-
vices that incur large weight penalties. The introduction of smart
structure materials into rotor blades has provided the potential for
actuation devices that are lightweight and can operate over a wide
bandwidth of frequencies.13

Recently, methods of actively controlling vibration have shifted
to trailing-edge� aps. There are two basic types of � aps, servo� aps
and plain � aps. The servo� aps extend beyond the nominal struc-
ture of the blade and, therefore, induce pitching moments for the
control of the blade. The plain � ap is part of the blade, just as the
aileron of an aircraft wing, and induces lift as well as moments
to control oscillatory blade motion. The advantage of the plain
� ap over the servo� ap is that it has lower drag and normally re-
quires less activationpower. Various scaled rotor models with plain
trailing-edge � aps have been designed and tested that demonstrate
the capability of these systems to reduce the vibratory hub loads
effectively. Feasibility studies have been carried out to show their
potential for full-scale rotor systems to minimize actively vibratory
loads.15¡20

Our earlier efforts21¡23 explained the development of the neuro-
control algorithm that provides a new method capable of improved
performanceover the normally used controllers.Numerical simula-
tion results were used to demonstrate the ability of the controller to
learn to minimize bladeand hub vibratoryloads.This paperpresents
the results from real-time, closed-loop vibration control tests with
the neurocontrol algorithm on scale rotor blades in hover. Two dif-
ferent sets of Mach-scale rotor blades with different smart structure
actuators were tested to demonstrate the robust learning capability
of the controller. The paper is organized as follows. A brief review
of the neurocontrol algorithm is � rst presented. The controller im-
plementation and the test con� guration are explained, followed by
a discussion of the hardware and test results.

II. Neural Network Control Algorithm
HHC providesa frequency-domainapproachfor controllingheli-

copter vibrationsby representing the inputs and outputs in sine and
cosine components that are normally restricted to a few selected
frequencies. In contrast, the neurocontrol strategy is developed di-
rectly in the time domain. A radial basis network structure is used
as the approximator for the command input because it provides a
highly adaptive, splinelike solution for complex, nonlinear func-
tions. The period Tpd is divided into N evenly spaced nodes, and
associated with each node is a radial basis function g.x; k/. The
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control input is represented as the output of a single hidden layer
network:

±.t/ D
N ¡ 1X

k D 0

°k g[a¾ .t/ ¡ k] (1)

where g is the neural computational basis function, °k is the output
weight for each neuron, a is the scaling parameter that determines
the width of the neural function,¾ .t/ D (t mod Tpd ) is the periodized
time, and N is the total number of neural elements. A basis function
that is computationally fast, ef� cient, and particularly convenient
for real-time applications is the second-order B spline, shown in
Fig. 1 in comparison to a typical Gaussian function. Note that the a
and k are � xed in this formulation and that only the output weights
°k are adjusted during operation.

One advantage of this type of network is the ease of characteriz-
ing the accuracyof the resultingapproximationgiven the numberof
computing elements employed. For an r time continuously differ-
entiable function (r D 1 for second-order B spline) the achievable
uniform approximation accuracy provided by such an expansion,
using the optimal coef� cients °i;k , scales an O.a¡1/ (Ref. 24). The
variable a is a scaling parameter that controls the accuracy of the
approximation, and the total number of computing elements N is
chosen so that the resulting collection g(at ¡ k) completely covers
the domain on which the approximation is required.

Neural network approximation theory guarantees the accuracy
speci� ed earlier only for approximationson a boundeddomain.25;26

However, because the optimal input is known to be periodic with
known period Tpd , then the approximationis in fact requiredonly on
the boundedtime interval [0, Tpd]. Estimates for other valuesof time
can then be re� ected into this interval by periodicity using ¾ .t/.

The neuralnetworkapproximationat any point in time t 2 [0, Tpd]
is, therefore, a weighted sum of the in� uence of each of the evenly
spaced neural elements. The neural approximation,using a second-
order B spline for g, as shown in Fig. 2, is effectively the piecewise
linear estimate to the unknown function f .t/. The accuracy of the
estimate dependson the number of elements and the correct knowl-
edge of the output weights. The correct set of weights is determined

Fig. 1 Gaussian and second-order B spline as radial basis functions.

Fig. 2 Unknown periodic function f(t) divided into N segments with
second-order B-spline functions as the neural computational elements;
network weights °°k are associated with the approximation to the func-
tion f (t).

by the learningprocess,which itself dependson the controlproblem
and will be developed in the following sections.

The neural network controller is developed in a discrete time
frame by sampling the loads and control inputs on a per rev basis.
The networkis developedto approximatethe controlinputnecessary
to minimize the vibratory component of the loads in the measured
signal y. The steady-state output obtained from this input can be
expressed as

y D y0 C H° C º (2)

where y consists of evenly spaced samples of the blade or hub loads
on the interval ¿ D [0, Tpd]. The vector ° contains the coef� cients °k

fromEq. (1), andº is measurementnoise.Vectory0 containssamples
of the uncontrolled load variations (when ° D 0). The columns of
H, denoted as hk , represent the components of the response due to
each neural basis function gk , that is, the (k C 1)th column of H is
the response y obtained if y0 D 0 and ±.t/ D gk [¿ .t/].

The optimal set of control inputs is determined by minimizing
the cost function JNN

JNN D yT Wyy C °T W° ° (3)

where Wy and W° are weighting functions for the vibratory loads
and the control inputs, respectively. The optimal network weights
° are determined by setting @ JNN=@° D 0 and solving for °opt as

°opt D ¡
¡
HT Wy H C W°

¢¡1
HT Wyy0 (4)

Effective vibration suppressiondepends on knowledge of y0 and H,
which may be dif� cult to determine a priori. An adaptive algorithm
was developed using a Kalman � lter to estimate the uncertain in-
formation online. The Kalman � lter states are the estimates of the
neural response vectors hk and the uncontrolled response y0 . The
network coef� cients ° are then dynamically updated to minimize
JNN given the currentestimatesof the state parameters, for example,

O°n D arg min
°

©
Wy kĤn° C ŷ0;nk2 C °T W° °

ª
(5)

where Ĥn and ŷ0;n are the Kalman � lter estimates of H and y0 at
iteration n, respectively. Our previous results with the control al-
gorithm demonstrated the control of vibratory hub loads by using
comprehensive rotor analysis UMARC to provide a pseudo-time-
marching simulation of the forward � ight conditions.22;23 The next
step in the controller development is to validate the algorithm with
real-time, closed-loop control tests utilizing active rotor systems.

III. Real-Time Closed-Loop Tests
A. Test Objectives

Two types of Mach-scaled smart rotor models (6-ft diam) with
piezoactuated trailing � aps and piezo plus bending– torsion cou-
pling actuated blade tips, respectively, were tested successfully in
hover and demonstrated their effectiveness in open-loop tests. The
tests were conducted at Mach-scale speeds (up to 2000 rpm), and
they successfully demonstrated the control authority and hardware
durability.19;27

First, the initial hardware-in-the-looptests of the neurocontroller
were developedfor a two-bladed rotorwith a single rotor blade with
an active � ap operating in hover. The adaptive learning capability
of the controller was demonstrated by allowing the controller to
minimize blade root � apping moment vibrations with no a priori
information of the blade or the � ight conditions. This system was
subject to periodicvibratory loads due to the out-of-trackrotor (dis-
similar blades) and loads induced by the actuator. Two types of
tests were conducted. The � rst tests were to demonstrate the neu-
rocontroller learning to counter the background vibrations arising
from the nontrackedrotor. The second tests were to demonstrate the
neurocontroller inducing vibratory loads at speci� c frequencies as
would be necessary for vibration reduction of the rotor in forward
� ight situations.

Second, to further demonstrate the versatility of the neurocon-
troller, these hover tests were repeated using the same control
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algorithm but with a different smart rotor. This rotor used an ac-
tive tip to alter the aerodynamics to reduce vibrations.

B. Controller Hardware
To implementthe neurocontrolalgorithm,a dedicatedPentiumIII

550-MHzpersonalcomputerwith a NationalInstrumentsPCI-MIO-
16E-1, 12-bit data acquisition (DAQ) board was used to host the
controller and perform the data acquisition and waveform genera-
tion. This controller hardware setup provided an ef� cient and cost-
effective system to implement the real-time control algorithm di-
rectly in Visual CCC. The DAQ board hardware commands such
as read and write of data from the input and output channels were
implemented through the libraries of C code commands provided
with the hardware.28¡30 The neurocontroller output solution had
output limits of §5 V from the DAQ board. The output signal was
ampli� ed with Trek 50/750 ampli� ers to §180 V and transmitted
througha separate set of slip ring channels to the piezoactuator.The
� apping moment strain-gaugesignal was transmitted through a dif-
ferent separated set of slip ring channels to the signal conditioners
in the control room.

The control algorithm requires the quasi-steady-vibratory signal
sampled at N evenly sampled points within a single revolution, and
similarly, the resultant command output is computed for N evenly
spaced points within a single revolution.To ensure the input vector
and resultant output control signal vectors were synchronized, the
intertriggered,continuous,double-bufferedcapabilitiesof the DAQ
boardwere used. The double-bufferfeatureenables the controllerto
update and control the output sequence simultaneously.The length
of the buffer and sampling rate were determined as part of the hard-
ware initialization such that a half buffer covered one rotor revolu-
tion.The numericalCCC packageused to performthematrix/vector
computations within the Kalman � lter and optimizations steps was
the Template Numerical Toolkit (TNT).31 The following test results
re� ect the implementation of the described control system.

C. End-to-End Controller Testing
Before the new control algorithm and computer were used on

an actual rotor system, a set of end-to-end shakedown tests were
developedand performedon the hardwareand software. These tests
were designed to achievethree goals.The � rst was to ensure that the
hardware interface elements of the code were functioningproperly.
The second goal was to ensure that the control algorithm would
generate the correct output solution for a known, given input to the
A/D hardware. The � nal goal was to use the tests to determine the
appropriate values of the free parameters within the algorithm for
the closed-loop tests with the actual rotor system.

For the shakedown tests, a function generator was used to pro-
vide known input signals of various shapes at different frequencies
and amplitudes. When the signal to minimize in the cost function
was the sum of the input and the neural network solution, the con-
troller would learn to cancel the input by learning its negation. The
measured inputs and control outputs were compared and used to
verify that the controller was indeed learning the desired results.
The following sectionsexplain the various aspects and resultsof the
end-to-end tests.

1. Initialization
The successof this controllerdependsin parton the inherentcom-

pensation of noise with the covariance models (Rn and Qn ) within
the Kalman � lter. The nonrotatingbackgroundsignalwas measured
at §0.01 mV, indicating very low sensor noise. The strain-gauge
signals for the spinning rotor were low-voltage measurements, less
than 100 mV, and were on the order of the normalized load values
encountered in the simulations. The test input signal was to be up
to §5 V with various levels of noise added. The noise was assumed
uncorrelated;therefore,the initial noise covarianceestimate was set
at R D 1:0I, where I is the identity matrix. The Kalman � lter state
initial covariance was set to P D 3:0I. The plant covariance was set
to Q D 0:01I. These values were suf� cient for the initializationtests
and were kept constant for the subsequent tests. The initial values
of the Kalman � lter states, hk and y0, were set to zero, effectively
giving the controller no a priori information about the blade, actua-
tor or the aerodynamics.Likewise, the initial network weight vector
° was set at small random numbers (order 1 £ 10¡3).

Fig. 3 Controller initialization tracking test results, W° 0.01 and 0.5;
controller learns negative of test load signal. Used §§ 1 V square wave as
test signal.

2. Cost Function Terms
In addition to the Kalman � lter covariances, the other free pa-

rameters within this control application are the weights associated
with the neural network cost function. One set of variables are the
relative weights associatedwith each load: Wx ; Wy; Wz; Wmx ; Wmy ,
and Wmz . Because the shakedown tests and subsequentexperiments
involved a single vibratory load, the relative load weights were set
to zero, except Wz , which was set to Wz D 1.

The other elements in the cost functionare the weights associated
with the controloutputW° , which have a direct effect on the perfor-
mance of the controller. The control output weight matrix contains
relative weights that apply to the magnitude and the rate of change
of the output solution. The weight matrix is given by

W° D .®I C ¯DT D/· (6)

where ® is the magnitudeweight and ¯ is the rate of change weight.
The matrix D provides a circulant � nite difference approximation
for the rate of change of the command outputs. The overall gain ·
provides the relative scaling between the squared load terms and
the squared output terms so that neither set of terms numerically
dominates the cost function.

The end-to-end tests with the function generator were used to
� nd the values of ®; ¯, and · such that the control output solution
would cancel the known input signal. A square wave of magnitude
§1 V was used as the load signal from the function generator. The
overall gain was determinedsuch that the orderof the controloutput
terms of the cost function were of the same order as the load terms.
The gain was determined as · D 1

2000 . The values for ® and ¯ were
adjusted until the input signal was negated as shown in Fig. 3. The
resultant control output was opposite of the input and was achieved
with ® D 0.01 and ¯ D 0.5.

3. Caution Terms
To prevent large-amplitude learning transients from the neuro-

controller, cautionary limits of 0.1 V were applied as the maximum
allowable amount of increaseof the outputs from the previous revo-
lution. In addition to the revolution-by-revolutionlimits, an overall
maximum limit (§1.4 V) was applied to the output to prevent large
voltages to the piezoactuators that would cause depoling or failure.
This limit was set to correspond to a maximum piezoactuation of
180 Vrms.

IV. Results and Discussion
A. Trailing-Edge Flap Rotor

The rotor system in the � rst set of tests was a two-bladedpiezoac-
tuated rotor developed for the Mach-scale active rotor tests.27 Both
blades had trailing-edge � aps; however, only one blade was ac-
tively controlled by the neurocontroller. Whereas the blades had
been tested at near Mach-scale speeds, the initial neurocontrol tests
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Fig. 4 Schematic of Mach-scale bladewith piezoactuated trailing-edge
� ap.

Fig. 5 Scale rotor blade with trailing-edge � ap; two-bladed rotor on
hover tower.

were conductedat slowerspeeds (<600 rpm)as a measureof caution
to not damage the blades or the rotor. The blade radius was 36 in.,
and the trailing-edge � ap span was 1.5 in. The rotor blades were
mounted on a strain-gauge instrumented bearingless hub. Instead
of controlling a � xed frame hub load, the rotating frame � exbeam
� apping moment signal was the vibratory load source used by the
neurocontroller. The schematic of the scale rotor blade with the
piezoactuatedtrailing-edge� ap is shown in Fig. 4. The actual active
blade is shown on the rotor tower in Fig. 5.

1. Background Test Results
The cyclic settings for the rotor were 0.03 deg lateral and 0.3 deg

longitudinal with collective effectively zero. This setting resulted
in a minor 1P (1/rev) blade � apping moment for the hover test
conditions with the rotor operating at 500 rpm (8.3 Hz). The � rst
closed-loop test with the neurocontroller was to allow it to mini-
mize the background vibration. Figure 6 shows the time history of
the � apping moment response with the neurocontrolleractive. The
controller begins updating immediately and by rev 15 has achieved
the maximum vibrationreductionpossible.Figure 7 shows the com-
parisonsof the � apping moment response,and clearly the dominant
1P vibration has been reduced. Indeed, the neurocontroller has re-
duced the total vibrational energy from 0.3038 to 0.0697, a 73%
reduction. Moreover, the controller has achieved a broadband re-
duction in vibration, exhibited by signi� cant reductions up to 5P.

The frequency spectrum of the trailing-edge� ap input command
over the last revolutionis shown in Fig. 8. The actual � ap de� ection

Fig. 6 Time history plot of background vibration suppression; blade
root � apping moment at rotor speed of 500 rpm (8.3 Hz).

Fig. 7 Flapping moment harmonic spectrum comparison; blade root
vibratory loads for rotor at 500 rpm (8.3 Hz).

Fig. 8 Frequency spectrum for neural network control input for back-
ground suppression test; blade root vibratory control for rotor at
500 rpm (8.3 Hz).

angle was measured from a Hall effect sensor located on the blade.
The � ap motion data were acquired with a separate data acquisi-
tion computer that was not synchronizedwith the control computer;
therefore, the two plots (Figs. 8 and 9) do not represent the exact
same moments in time. The � ap motion data were collected after
the controller had achieved a converged solution. Figure 9 shows a
time history for one rev of the measured trailing-edge � ap motion
after the converged neurocontrollersolution had been achieved.
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Fig.9 Finalrevolutionofneuralnetwork output:backgroundsuppres-
sion; blade root � apping moment control of rotor at 500 rpm (8.3 Hz).

Fig. 10 Flappingmoment spectrum comparison between uncontrolled
and neurocontrolled induced-load test; desired induced load of 0.1 mV
at 2P, rotor speed at 500 rpm (8.3 Hz).

2. Induced-Load Tests
The next tests were designed to demonstrate the controllers’abil-

ity to learn not only to control the backgroundvibrationsbut also to
induce other loads at speci� c frequencies. This task demonstrates
the ability of the controller to track a user-speci�ed load pro� le that
simulates the controller learning to control more complex vibratory
loads such as appear in forward � ight. The � rst such test involved
the controllerinducinga speci� edvibratory� appingmoment strain-
gauge signal of 0.1 mV at a frequency of 2P. The comparison be-
tween the controlled and uncontrolled frequency spectrum for this
test is shown in Fig. 10. The neurocontrollercanceled the 1P and 3P
background vibrations while simultaneously inducing the desired
2P load.

The described background suppression and 2P induced-load
tests successfully demonstrated the controller’s ability to minimize
and/or induce vibrationswhile accountingfor the system dynamics.
In each case, the controller begins the learning process with no a
priori information about the blade, the actuator, or the dynamics.
The controller adaptively learns in real time while simultaneously
controlling the system.

B. Active Twist Tip Rotor
The � nal tests were designed to demonstrate that the new con-

troller could actually operate independentlyof the speci� c actuator.
The neuralnetwork learns theactuatordynamics,as well as the blade
responseand actuator inputs22; therefore,the performanceshouldbe
similar if tested with a new and differentactuationsystem.The rotor
system used in the tests was a new set of rotor blades that had the
outer 10% of the blade free to rotate independentof the main blade.
The tips were driven by a piezoactuated,bending–torsion compos-

Fig. 11 Schematic of active tip twist rotor blade.

Fig. 12 Active tip twist rotor on hover stand.

ite coupled beam embedded within the rotor blade.32 A four-bladed
rotor was used; however, as with the previous tests, only one blade
was controlled. A schematic of the new piezoactuated tip twist ro-
tor blade is shown in Fig. 11, and the actual rotor is shown on the
hover test stand in Fig. 12. These blades have the same length and
chord as the trailing-edge � ap blades; however, the mass and stiff-
ness propertiesare differentdue to the complex, embeddedactuator
system.

The same types of tests were performed with this rotor as with
the earlier trailing-edge � ap rotor. The blade root � apping moment
signal was used as the control parameter, and the outputs to the
blade were the voltages to the power ampli� ers. The same control
algorithm was used, and the only modi� cation was to change the
maximum output voltage to 2.83 V. The same initializations were
used as in the earlier tests.

The following active tip rotor test results were for the hover tests
conducted at a rotor speed of 2000 rpm (33.3 Hz). The rotor cyclic
inputs were as close to zero as possible; however, a 1P background
vibrationremained.The backgroundsuppressiontestwas conducted
with the controller learning to minimize the dominant 1P vibration.
The harmonic vibration comparison is shown in Fig. 13, demon-
strating that the controller has achieved a 98% reduction.

The induced-loadtests were also conductedat different rotor har-
monics. A multifrequency load was also tested for this new rotor,
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Fig. 13 Flapping moment frequency spectrum comparison for active
tip twist rotor blade; blade root vibratory load for rotor at 2000 rpm
(33.3 Hz).

Fig. 14 Flapping moment results for combined induced-load test: ac-
tive tip twist rotor blade with desired loads 45 mV at 3P, 40 mV at 4P,
and 55 mV at 5P; rotor at 2000 rpm (33.3 Hz).

Fig. 15 Neurocontrol inputs for combined induced-load test: active tip
twist rotating blade, desired loads 45 mV at 3P, 40 mV at 4P, and 55 mV
at 5P; rotor at 2000 rpm (33.3 Hz).

illustrating the types of loads the controller would be required to
use in forward � ight conditions.The controllerwas tasked to induce
simultaneously loads of 45 mV at 3P, 40 mV at 4P, and 55 mV at
5P. Figure 14 shows spectrum of the resultant load, indicating that
the controller has achieved the multiload task. The command in-
put solution and its spectrum are shown in Fig. 15, demonstrating
again that the controller learns a broad spectrum input to achieve
the control task.

V. Conclusions
These closed-loop tests with two different Mach-scale smart ro-

tor systems demonstrate the neurocontroller’s robust ability to learn
successfully to control the rotor vibrations with no a priori infor-
mation about the blade, the actuator, or the aerodynamic loading.
The controller uses a neural network to learn to drive the smart ro-
tor actuator, thus adaptivelysuppressingthe blade vibrations.These
tests demonstrated that no of� ine training was necessary. Instead,
the neural network simultaneously learned in real time while adap-
tively commanding the actuator to reduce vibrations.
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