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Closed-Loop Neurocontroller Tests on Piezoactuated
Smart Rotor Blades in Hover

Michael G. Spencer,* Robert M. Sanner,” and Inderjit Chopra¥
University of Maryland, College Park, Maryland 20742

On-blade smart structure actuators are capable of actively altering the aerodynamicloads on rotor blades. With
a suitable feedback control law, such actuators could potentially be used to counter the vibrations induced by
periodic aerodynamic loading on the blades with lower weight penalties than the previous actuation methods and
without the bandwidth constraints. We cover the development and testing of a new, robust individual blade control
methodology for rotor vibration suppression using piezoactuated trailing-edge flaps and active twist tip rotors.
The controller uses a neural network to learn to actuate the trailing-edge flap, thus adaptively suppressing the
blade or hub vibrations. In this application, no offline training is performed. Instead, a neural network is used
in real time to command adaptively the actuator deflections, thus reducing vibrations. Closed-loop experimental
tests with piezoactuated-scale rotor systems were conducted on the University of Maryland hover test stand. The
results include two different Mach-scale smart rotor systems (trailing-edge flaps and active tip twist) that were
controlled by the same adaptive neurocontrol algorithm. These tests demonstrate the controller’s robust ability to
learn to control successfully the rotor vibrations with no a priori information about the blade/actuator structure

or the aerodynamic loading.

I. Introduction

HE major sourceofhelicoptervibrationis the main rotor, which

transmits oscillatory forces and moments through the hub to
the airframe. The blade loads are generated by the unsteady aerody-
namics at the rotor disk. For a rotor with N, blades, the oscillatory
(N, — 1)/revolution, N, /revolution, and (N, + 1) /revolution blade
loads are transmitted as exciting hub forces and moments to the
vehicle at a dominant frequency of N,, /revolution (Ref. 1). Higher
harmonic control (HHC) is an active vibration control approach that
has been shown to be effective in suppressing helicopter vibrations.
An HHC system excites the blade pitch at higher harmonics of the
rotor rotational speed, generating new unsteady airloads that com-
bine with oscillatory inertial loads to cancel the harmonics of the
blade loads that cause hub vibrations. The helicopter vibrations are
thereby suppressed at the source.! =

One method that has been extensively investigated is active
blade root pitch control using swashplate oscillations. The swash-
plate is activated in the collective, longitudinal cyclic and lat-
eral cyclic modes at N, /revolution resulting in blade pitch oscil-
lations at the frequencies of (N, — 1)/revolution, N, /revolution,
and (N, + 1) /revolutionin the rotating frame.! HHC methods have
been applied successfully using numerical simulations,' ~* wind-
tunnel tests,’~® and full-scale flight tests,”~!! producing reductions
in vibration from 25 to 90%.

Although capable of reducing vibrations, these control systems
require high actuation power and involve large weight penalties.
Also, the swashplate actuation is limited to N, /revolution. These
drawbacks lead to research into individual blade control (IBC)!0-14
systems, where the pitch of each blade is controlled separately at
any desired frequency. The feathering of the completebladerequires
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large actuation forces, and early IBC methods used hydraulic de-
vices that incur large weight penalties. The introduction of smart
structure materials into rotor blades has provided the potential for
actuation devices that are lightweight and can operate over a wide
bandwidth of frequencies.!?

Recently, methods of actively controlling vibration have shifted
to trailing-edge flaps. There are two basic types of flaps, servoflaps
and plain flaps. The servoflaps extend beyond the nominal struc-
ture of the blade and, therefore, induce pitching moments for the
control of the blade. The plain flap is part of the blade, just as the
aileron of an aircraft wing, and induces lift as well as moments
to control oscillatory blade motion. The advantage of the plain
flap over the servoflap is that it has lower drag and normally re-
quires less activation power. Various scaled rotor models with plain
trailing-edge flaps have been designed and tested that demonstrate
the capability of these systems to reduce the vibratory hub loads
effectively. Feasibility studies have been carried out to show their
potential for full-scalerotor systems to minimize actively vibratory
loads.=%

Our earlier efforts explained the development of the neuro-
control algorithm that provides a new method capable of improved
performance over the normally used controllers. Numerical simula-
tion results were used to demonstrate the ability of the controllerto
learn to minimize blade and hub vibratoryloads. This paper presents
the results from real-time, closed-loop vibration control tests with
the neurocontrol algorithm on scale rotor blades in hover. Two dif-
ferent sets of Mach-scalerotor blades with different smart structure
actuators were tested to demonstrate the robust learning capability
of the controller. The paper is organized as follows. A brief review
of the neurocontrol algorithm is first presented. The controller im-
plementation and the test configuration are explained, followed by
a discussion of the hardware and test results.

21-23

II. Neural Network Control Algorithm

HHC provides a frequency-domainapproachfor controlling heli-
copter vibrations by representing the inputs and outputs in sine and
cosine components that are normally restricted to a few selected
frequencies. In contrast, the neurocontrol strategy is developed di-
rectly in the time domain. A radial basis network structure is used
as the approximator for the command input because it provides a
highly adaptive, splinelike solution for complex, nonlinear func-
tions. The period T} is divided into N evenly spaced nodes, and
associated with each node is a radial basis function g(x, k). The
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control input is represented as the output of a single hidden layer
network:

N -1
5= Y niglas(t) — k] ()

k=0

where g is the neural computational basis function, y; is the output
weight for each neuron, a is the scaling parameter that determines
the width of the neural function, o () = (t mod 7,4) is the periodized
time, and N is the total number of neural elements. A basis function
that is computationally fast, efficient, and particularly convenient
for real-time applications is the second-order B spline, shown in
Fig. 1 in comparison to a typical Gaussian function. Note that the a
and k are fixed in this formulation and that only the output weights
¥, are adjusted during operation.

One advantage of this type of network is the ease of characteriz-
ing the accuracy of the resulting approximationgiven the number of
computing elements employed. For an r time continuously differ-
entiable function (r =1 for second-order B spline) the achievable
uniform approximation accuracy provided by such an expansion,
using the optimal coefficients y; ;, scales an O(a~!) (Ref. 24). The
variable a is a scaling parameter that controls the accuracy of the
approximation, and the total number of computing elements N is
chosen so that the resulting collection g(at — k) completely covers
the domain on which the approximationis required.

Neural network approximation theory guarantees the accuracy
specified earlier only for approximationson a bounded domain 226
However, because the optimal input is known to be periodic with
known period 7,4, then the approximationis in fact required only on
the boundedtime interval [0, 7},4]. Estimates for other values of time
can then be reflected into this interval by periodicity using o ().

The neural network approximationat any pointin time ¢ € [0, T,q]
is, therefore, a weighted sum of the influence of each of the evenly
spaced neural elements. The neural approximation, using a second-
order B spline for g, as shown in Fig. 2, is effectively the piecewise
linear estimate to the unknown function f(¢). The accuracy of the
estimate depends on the number of elements and the correct knowl-
edge of the output weights. The correct set of weights is determined
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Fig.1 Gaussian and second-order B spline as radial basis functions.

Fig. 2 Unknown periodic function f(¢) divided into N segments with
second-order B-spline functions as the neural computational elements;
network weights «; are associated with the approximation to the func-

tion f(¢).

by the learning process, which itself depends on the control problem
and will be developed in the following sections.

The neural network controller is developed in a discrete time
frame by sampling the loads and control inputs on a per rev basis.
The networkis developedto approximatethe controlinputnecessary
to minimize the vibratory component of the loads in the measured
signal y. The steady-state output obtained from this input can be
expressed as

y=yo+H~vy+v ?2)

wherey consists of evenly spaced samples of the blade or hub loads
on theinterval T = [0, T}4]. The vector vy contains the coefficients y;
fromEq. (1), and v is measurementnoise. Vectory, containssamples
of the uncontrolled load variations (when v =0). The columns of
H, denoted as hy, represent the components of the response due to
each neural basis function g, that is, the (k + 1)th column of H is
the responsey obtained if yo =0 and §(¢) = g« [t (?)].

The optimal set of control inputs is determined by minimizing
the cost function Jyn

Ixn =yTWyJ’+’7TWy’7 3)

where W, and W, are weighting functions for the vibratory loads
and the control inputs, respectively. The optimal network weights
< are determined by setting 3 Jun/dy = 0 and solving for 7, as

-1
Yo = —(H' W, H+W,) H Wy, 4)

Effective vibration suppressiondepends on knowledge of y, and H,
which may be difficult to determine a priori. An adaptive algorithm
was developed using a Kalman filter to estimate the uncertain in-
formation online. The Kalman filter states are the estimates of the
neural response vectors k; and the uncontrolled response y,. The
network coefficients « are then dynamically updated to minimize
Jxn given the currentestimates of the state parameters, for example,

Yo = arg}}nln {Wy I8,y + $o. I +’7TWV7} )

where fI,, and §,, are the Kalman filter estimates of H and y, at
iteration n, respectively. Our previous results with the control al-
gorithm demonstrated the control of vibratory hub loads by using
comprehensive rotor analysis UMARC to provide a pseudo-time-
marching simulation of the forward flight conditions >3 The next
step in the controller developmentis to validate the algorithm with
real-time, closed-loop control tests utilizing active rotor systems.

III. Real-Time Closed-Loop Tests
A. Test Objectives

Two types of Mach-scaled smart rotor models (6-ft diam) with
piezoactuated trailing flaps and piezo plus bending-torsion cou-
pling actuated blade tips, respectively, were tested successfully in
hover and demonstrated their effectivenessin open-loop tests. The
tests were conducted at Mach-scale speeds (up to 2000 rpm), and
they successfully demonstrated the control authority and hardware
durability.>?’

First, the initial hardware-in-the-looptests of the neurocontroller
were developed for a two-bladed rotor with a single rotor blade with
an active flap operating in hover. The adaptive learning capability
of the controller was demonstrated by allowing the controller to
minimize blade root flapping moment vibrations with no a priori
information of the blade or the flight conditions. This system was
subjectto periodic vibratory loads due to the out-of-trackrotor (dis-
similar blades) and loads induced by the actuator. Two types of
tests were conducted. The first tests were to demonstrate the neu-
rocontroller learning to counter the background vibrations arising
from the nontrackedrotor. The second tests were to demonstrate the
neurocontrollerinducing vibratory loads at specific frequencies as
would be necessary for vibration reduction of the rotor in forward
flight situations.

Second, to further demonstrate the versatility of the neurocon-
troller, these hover tests were repeated using the same control
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algorithm but with a different smart rotor. This rotor used an ac-
tive tip to alter the aerodynamics to reduce vibrations.

B. Controller Hardware

To implementthe neurocontrolalgorithm,a dedicated Pentium I11
550-MHz personal computer with a National Instruments PCI-MIO-
16E-1, 12-bit data acquisition (DAQ) board was used to host the
controller and perform the data acquisition and waveform genera-
tion. This controller hardware setup provided an efficient and cost-
effective system to implement the real-time control algorithm di-
rectly in Visual C++. The DAQ board hardware commands such
as read and write of data from the input and output channels were
implemented through the libraries of C code commands provided
with the hardware.?®=3° The neurocontroller output solution had
output limits of £5 V from the DAQ board. The output signal was
amplified with Trek 50/750 amplifiers to £180 V and transmitted
through a separate set of slip ring channels to the piezoactuator.The
flapping moment strain-gauge signal was transmitted through a dif-
ferent separated set of slip ring channels to the signal conditioners
in the control room.

The control algorithm requires the quasi-steady-vibraory signal
sampled at N evenly sampled points within a single revolution, and
similarly, the resultant command output is computed for N evenly
spaced points within a single revolution. To ensure the input vector
and resultant output control signal vectors were synchronized, the
intertriggered,continuous,double-bufferedcapabilities of the DAQ
board were used. The double-bufferfeature enables the controllerto
update and control the output sequence simultaneously. The length
of the buffer and sampling rate were determined as part of the hard-
ware initialization such that a half buffer covered one rotor revolu-
tion. The numerical C++ packageused to performthe matrix/vector
computations within the Kalman filter and optimizations steps was
the Template Numerical Toolkit (TNT).?! The following test results
reflect the implementation of the described control system.

C. End-to-End Controller Testing

Before the new control algorithm and computer were used on
an actual rotor system, a set of end-to-end shakedown tests were
developed and performed on the hardware and software. These tests
were designedto achievethree goals. The first was to ensure that the
hardware interface elements of the code were functioning properly.
The second goal was to ensure that the control algorithm would
generate the correct output solution for a known, given input to the
A/D hardware. The final goal was to use the tests to determine the
appropriate values of the free parameters within the algorithm for
the closed-loop tests with the actual rotor system.

For the shakedown tests, a function generator was used to pro-
vide known input signals of various shapes at different frequencies
and amplitudes. When the signal to minimize in the cost function
was the sum of the input and the neural network solution, the con-
troller would learn to cancel the input by learning its negation. The
measured inputs and control outputs were compared and used to
verify that the controller was indeed learning the desired results.
The following sections explain the various aspects and results of the
end-to-end tests.

1. Initialization

The success of this controllerdependsin parton the inherentcom-
pensation of noise with the covariance models (R, and Q,,) within
the Kalman filter. The nonrotatingbackground signal was measured
at £0.01 mV, indicating very low sensor noise. The strain-gauge
signals for the spinning rotor were low-voltage measurements, less
than 100 mV, and were on the order of the normalized load values
encountered in the simulations. The test input signal was to be up
to =5 V with various levels of noise added. The noise was assumed
uncorrelated;therefore, the initial noise covariance estimate was set
at R=1.01, where I is the identity matrix. The Kalman filter state
initial covariance was set to P =3.01. The plant covariance was set
to @ =0.011. These values were sufficient for the initializationtests
and were kept constant for the subsequent tests. The initial values
of the Kalman filter states, &, and y,, were set to zero, effectively
giving the controllerno a priori information about the blade, actua-
tor or the aerodynamics. Likewise, the initial network weight vector
~ was set at small random numbers (order 1 x 1073).
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~~~~~~~~ Network Output]
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Volts
-0.5 d
i d ....... M...L,J ........ L.J ...... J
-1.5 - - -
18 18.5 19 19.5 20

Revs

Fig.3 Controller initialization tracking test results, W, 0.01 and 0.5;
controller learns negative of test load signal. Used £1 V square wave as
test signal.

2. Cost Function Terms

In addition to the Kalman filter covariances, the other free pa-
rameters within this control application are the weights associated
with the neural network cost function. One set of variables are the
relative weights associated with eachload: W, W,, W_ . W, .. W,,,,
and W,,.. Because the shakedown tests and subsequentexperiments
involved a single vibratory load, the relative load weights were set
to zero, except W, which was setto W, =1.

The other elementsin the cost function are the weights associated
with the controloutput W,,, which have a direct effect on the perfor-
mance of the controller. The control output weight matrix contains
relative weights that apply to the magnitude and the rate of change
of the output solution. The weight matrix is given by

W, = (aI + D" D)« ©)

where « is the magnitude weight and 8 is the rate of change weight.
The matrix D provides a circulant finite difference approximation
for the rate of change of the command outputs. The overall gain «
provides the relative scaling between the squared load terms and
the squared output terms so that neither set of terms numerically
dominates the cost function.

The end-to-end tests with the function generator were used to
find the values of «, 8, and « such that the control output solution
would cancel the known input signal. A square wave of magnitude
+1 V was used as the load signal from the function generator. The
overall gain was determined such that the order of the control output
terms of the cost function were of the same order as the load terms.
The gain was determined as k = m The values for & and S were
adjusted until the input signal was negated as shown in Fig. 3. The
resultant control output was opposite of the input and was achieved
with @ =0.01 and 8 =0.5.

3. Caution Terms

To prevent large-amplitude learning transients from the neuro-
controller, cautionary limits of 0.1 V were applied as the maximum
allowable amount of increase of the outputs from the previousrevo-
lution. In addition to the revolution-by-revolutionlimits, an overall
maximum limit (1.4 V) was applied to the output to prevent large
voltages to the piezoactuatorsthat would cause depoling or failure.
This limit was set to correspond to a maximum piezoactuation of
180 Vrms.

IV. Results and Discussion
A. Trailing-Edge Flap Rotor
The rotor systemin the first set of tests was a two-bladed piezoac-
tuated rotor developed for the Mach-scale active rotor tests.”’” Both
blades had trailing-edge flaps; however, only one blade was ac-
tively controlled by the neurocontroller. Whereas the blades had
been tested at near Mach-scale speeds, the initial neurocontrol tests
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Piezo
Actuator

Trailing
Edge Flap

Fig.4 Schematic of Mach-scale blade with piezoactuated trailing-edge
flap.

Trailing Edge Flap

Fig. 5 Scale rotor blade with trailing-edge flap; two-bladed rotor on
hover tower.

were conductedat slower speeds (<600 rpm) as a measure of caution
to not damage the blades or the rotor. The blade radius was 36 in.,
and the trailing-edge flap span was 1.5 in. The rotor blades were
mounted on a strain-gauge instrumented bearingless hub. Instead
of controlling a fixed frame hub load, the rotating frame flexbeam
flapping moment signal was the vibratory load source used by the
neurocontroller. The schematic of the scale rotor blade with the
piezoactuatedtrailing-edgeflap is shown in Fig. 4. The actual active
blade is shown on the rotor tower in Fig. 5.

1. Background Test Results

The cyclic settings for the rotor were 0.03 deg lateral and 0.3 deg
longitudinal with collective effectively zero. This setting resulted
in a minor 1P (1/rev) blade flapping moment for the hover test
conditions with the rotor operating at 500 rpm (8.3 Hz). The first
closed-loop test with the neurocontroller was to allow it to mini-
mize the background vibration. Figure 6 shows the time history of
the flapping moment response with the neurocontrolleractive. The
controller begins updating immediately and by rev 15 has achieved
the maximum vibrationreductionpossible. Figure 7 shows the com-
parisons of the flapping moment response, and clearly the dominant
1P vibration has been reduced. Indeed, the neurocontrollerhas re-
duced the total vibrational energy from 0.3038 to 0.0697, a 73%
reduction. Moreover, the controller has achieved a broadband re-
duction in vibration, exhibited by significant reductions up to 5P.

The frequency spectrum of the trailing-edge flap input command
over the lastrevolutionis shown in Fig. 8. The actual flap deflection
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1.5

Neural Learning

Controlled

VL/\
0.50 (\—/%
Flapping
Moment 0 ‘
(mV x 50) Al
-0.5 [

15 : s . :
0 10 20 30 40 50

Revs

Fig. 6 Time history plot of background vibration suppression; blade
root flapping moment at rotor speed of 500 rpm (8.3 Hz).
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Fig. 7 Flapping moment harmonic spectrum comparison; blade root
vibratory loads for rotor at 500 rpm (8.3 Hz).

0.9r 1
0.8f 1

Input 5 o1 ]
Volts 0.6

0.5} 1

0.3r 1

01t 1

0 10 20 30 40 50 60 70 80
Frequency (Hz)

Fig.8 Frequency spectrum for neural network control input for back-
ground suppression test; blade root vibratory control for rotor at
500 rpm (8.3 Hz).

angle was measured from a Hall effect sensor located on the blade.
The flap motion data were acquired with a separate data acquisi-
tion computer that was not synchronized with the control computer;
therefore, the two plots (Figs. 8 and 9) do not represent the exact
same moments in time. The flap motion data were collected after
the controller had achieved a converged solution. Figure 9 shows a
time history for one rev of the measured trailing-edge flap motion
after the converged neurocontroller solution had been achieved.
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Fig.9 Finalrevolutionofneural network output: backgroundsuppres-
sion; blade root flapping moment control of rotor at 500 rpm (8.3 Hz).
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Fig.10 Flappingmoment spectrum comparison between uncontrolled
and neurocontrolled induced-load test; desired induced load of 0.1 mV
at 2P, rotor speed at 500 rpm (8.3 Hz).

2. Induced-Load Tests

The nexttests were designed to demonstrate the controllers’ abil-
ity to learn not only to control the background vibrationsbut also to
induce other loads at specific frequencies. This task demonstrates
the ability of the controllerto track a user-specified load profile that
simulates the controller learning to control more complex vibratory
loads such as appear in forward flight. The first such test involved
the controllerinducinga specified vibratoryflapping moment strain-
gauge signal of 0.1 mV at a frequency of 2P. The comparison be-
tween the controlled and uncontrolled frequency spectrum for this
testis shown in Fig. 10. The neurocontrollercanceled the 1P and 3P
background vibrations while simultaneously inducing the desired
2P load.

The described background suppression and 2P induced-load
tests successfully demonstrated the controller’s ability to minimize
and/or induce vibrations while accounting for the system dynamics.
In each case, the controller begins the learning process with no a
priori information about the blade, the actuator, or the dynamics.
The controller adaptively learns in real time while simultaneously
controlling the system.

B. Active Twist Tip Rotor

The final tests were designed to demonstrate that the new con-
troller could actually operate independentlyof the specific actuator.
The neuralnetwork learns the actuatordynamics, as well as the blade
responseand actuatorinputs®?; therefore, the performance should be
similarif tested with a new and differentactuation system. The rotor
system used in the tests was a new set of rotor blades that had the
outer 10% of the blade free to rotate independentof the main blade.
The tips were driven by a piezoactuated, bending-torsion compos-

Actuated
Beam

Active
Twist
Tip

Fig.11 Schematic of active tip twist rotor blade.

Fig. 12 Active tip twist rotor on hover stand.

ite coupled beam embedded within the rotor blade.*? A four-bladed
rotor was used; however, as with the previous tests, only one blade
was controlled. A schematic of the new piezoactuated tip twist ro-
tor blade is shown in Fig. 11, and the actual rotor is shown on the
hover test stand in Fig. 12. These blades have the same length and
chord as the trailing-edge flap blades; however, the mass and stiff-
ness properties are differentdue to the complex, embedded actuator
system.

The same types of tests were performed with this rotor as with
the earlier trailing-edge flap rotor. The blade root flapping moment
signal was used as the control parameter, and the outputs to the
blade were the voltages to the power amplifiers. The same control
algorithm was used, and the only modification was to change the
maximum output voltage to 2.83 V. The same initializations were
used as in the earlier tests.

The following active tip rotor test results were for the hover tests
conducted at a rotor speed of 2000 rpm (33.3 Hz). The rotor cyclic
inputs were as close to zero as possible; however, a 1P background
vibrationremained. The backgroundsuppressiontest was conducted
with the controller learning to minimize the dominant 1P vibration.
The harmonic vibration comparison is shown in Fig. 13, demon-
strating that the controller has achieved a 98 % reduction.

The induced-loadtests were also conducted at differentrotor har-
monics. A multifrequency load was also tested for this new rotor,
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Fig. 13 Flapping moment frequency spectrum comparison for active
tip twist rotor blade; blade root vibratory load for rotor at 2000 rpm
(33.3Hz2).
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Fig. 14 Flapping moment results for combined induced-load test: ac-
tive tip twist rotor blade with desired loads 45 mV at 3P, 40 mV at 4P,
and 55 mV at 5P; rotor at 2000 rpm (33.3 Hz).
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Fig.15 Neurocontrol inputs for combined induced-load test: active tip
twist rotating blade, desired loads45 mV at 3P,40 mV at 4P, and 55 mV
at 5P; rotor at 2000 rpm (33.3 Hz).

illustrating the types of loads the controller would be required to
use in forward flight conditions. The controller was tasked to induce
simultaneously loads of 45 mV at 3P, 40 mV at 4P, and 55 mV at
5P. Figure 14 shows spectrum of the resultant load, indicating that
the controller has achieved the multiload task. The command in-
put solution and its spectrum are shown in Fig. 15, demonstrating
again that the controller learns a broad spectrum input to achieve
the control task.

V. Conclusions

These closed-loop tests with two different Mach-scale smart ro-
tor systems demonstrate the neurocontroller’s robust ability to learn
successfully to control the rotor vibrations with no a priori infor-
mation about the blade, the actuator, or the aerodynamic loading.
The controller uses a neural network to learn to drive the smart ro-
tor actuator, thus adaptively suppressing the blade vibrations. These
tests demonstrated that no offline training was necessary. Instead,
the neural network simultaneously learned in real time while adap-
tively commanding the actuator to reduce vibrations.
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